From d95a4f0983a6c278721d3da77050db1dec90616a Mon Sep 17 00:00:00 2001 From: Anupam Jain Date: Tue, 22 Oct 2024 14:29:56 +0530 Subject: [PATCH] Newtype some more to get reify working --- src/Singletons.purs | 25 ++++++++++++++----------- 1 file changed, 14 insertions(+), 11 deletions(-) diff --git a/src/Singletons.purs b/src/Singletons.purs index 206fae0..d63f6b9 100644 --- a/src/Singletons.purs +++ b/src/Singletons.purs @@ -2,7 +2,7 @@ module Singletons where import Control.Category (identity, (<<<)) import Data.Exists (Exists, mkExists, runExists) -import Data.Function (flip, (#)) +import Data.Function ((#)) import Data.Leibniz (type (~), runLeibniz, symm) data Nat @@ -32,9 +32,8 @@ reflect' = case _ of SSucc p -> p # runExists \ (Prev s _) -> Succ (reflect' s) -- Term -> Type --- Why DOES this NOT work --- reify :: forall r. (forall p. SNatOf p => r) -> Nat -> r --- reify x n = runExists (withDNat x) (toSomeNat n) +reify :: forall r. (forall p. Res p r) -> Nat -> r +reify x n = runExists (withDNat x) (toSomeNat n) -- Isomorphic to Nat type SomeNat = Exists SNat @@ -50,21 +49,25 @@ toSomeNat (Succ n) = toSomeNat n # runExists \sn -> mkExists (SSucc (mkExists (P ssucc :: SomeNat -> SomeNat ssucc = toSomeNat <<< Succ <<< fromSomeNat -newtype DNat p = DNat (forall r. (SNatOf p => r) -> r) +-- This is a newtype because - In a definition like this - `provideDNat x (DNat f) = f x`, where `f :: SNatOf p => r` +-- the PS typchecker sees `f x` and elaborates `x` to take the `SNatOf` constraint even though it may not need it +-- If we block off the constraint inside a newtype, it doesn't do this +newtype Res p r = Res (SNatOf p => r) + +-- This is a newtype because runLeibniz needs it to be of the form `TypConstr p`` +-- And it doesn't seem to work well with type aliases +newtype DNat p = DNat (forall r. Res p r -> r) captureDNat :: forall @p. SNatOf p => DNat p -captureDNat = DNat \r -> r +captureDNat = DNat \ (Res r) -> r -provideDNat :: forall p r. (SNatOf p => r) -> DNat p -> r -provideDNat = flip unDNat - -unDNat :: forall p r. DNat p -> (SNatOf p => r) -> r +unDNat :: forall p r. DNat p -> Res p r -> r unDNat (DNat f) = f dNat :: forall p. SNat p -> DNat p dNat s = DNat (\x -> withDNat x s) -withDNat :: forall p r. (SNatOf p => r) -> SNat p -> r +withDNat :: forall p r. Res p r -> SNat p -> r withDNat x sn = case sn of SZero w -> unDNat (runLeibniz (symm w) (captureDNat @PZero)) x SSucc e -> e # runExists \ (Prev _ w) -> unDNat (runLeibniz (symm w) (dNat (runLeibniz w sn))) x